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Richtmyer–Meshkov instability is investigated for negative Atwood number and
two-dimensional sinusoidal perturbations by comparing experiments, numerical sim-
ulations and analytic theories. The experiments were conducted on the NOVA laser
with strong radiatively driven shocks with Mach numbers greater than 10. Three
different hydrodynamics codes (RAGE, PROMETHEUS and FronTier) reproduce
the amplitude evolution and the gross features in the experiment while the fine-scale
features differ in the different numerical techniques. Linearized theories correctly cal-
culate the growth rates at small amplitude and early time, but fail at large amplitude
and late time. A nonlinear theory using asymptotic matching between the linear the-
ory and a potential flow model shows much better agreement with the late-time and
large-amplitude growth rates found in the experiments and simulations. We vary the
incident shock strength and initial perturbation amplitude to study the behaviour of
the simulations and theory and to study the effects of compression and nonlinearity.

1. Introduction
Richtmyer–Meshkov instability (RMI) (Meshkov 1969, 1970; Richtmyer 1960) is

generated when a shock wave refracts through the interface between two materials.
Perturbations on the interface grow in size and cause the materials to mix. RMI plays
an important role in inertial confinement fusion (ICF), where small capsules con-
taining a deuterium-tritium fuel are compressed by laser-generated shock waves. The
goal is to achieve sufficiently high pressures and temperatures inside the compressed
ICF targets to ignite the fuel. Mixing due to instabilities on the interface between
the outer shell and the inner fuel inhibits the fusion reaction and can be a limiting
factor in the energy produced (Emery et al. 1991; Ishizaki & Nishihara 1997; Lindl,
McCrory & Campbell 1992; Taylor et al. 1997).

Even in the simplest case of a plane shock hitting a sinusoidally perturbed interface
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Figure 1. Computation of NOVA RMI experiments. (a) A shock wave moves toward the interface
between beryllium (shaded) and foam (unshaded). (b) The shock wave has refracted through
the interface and deposited vorticity along the interface that will drive perturbation growth. The
transmitted shock and the two edges of the reflected rarefaction wave are also shown. (c) Late-time
interface showing the characteristic mushroom shape. The transmitted and reflected waves have left
the region shown in the figure.

(see figure 1) experiments, numerical simulations and theoretical models have given
conflicting values for the growth rate of the perturbations (Benjamin 1992; Benjamin,
Besnard & Haas 1993; Besnard et al. 1991; Cloutman & Wehner 1992; Meshkov 1970;
Meyer & Blewett 1972; Richtmyer 1960). The discrepancy between experimentally
measured and predicted growth rates has been attributed to strength and porosity
effects of the membrane used to separate the gases in shock tube experiments (Clout-
man & Wehner 1992; Meshkov 1970; Meyer & Blewett 1972) and boundary layer
effects (Vetter & Sturtevant 1995). The critical importance of late-time nonlinearity in
RMI, independent of the experimental issues just mentioned, was shown in Grove et
al. (1993) and Holmes, Grove & Sharp (1995). In Holmes et al. (1995) simulations were
performed for relevant experimental times that showed greatly improved agreement
with experimental data while agreeing very well with previously published early-time
results. It was also shown that the linear theory accurately predicts growth rates for
very early times and small initial amplitudes. At later times the perturbation growth
rate decreases significantly due to nonlinear effects and the growth rates predicted by
the linear theory are too large. A theory for compressible RMI which accounts for
these nonlinear effects is developed in Zhang & Sohn (1996, 1997a, b). The theoretical
predictions are in excellent agreement with the results from numerical simulations
and experimental data considered in Benjamin (1992), Grove et al. (1993) and Holmes
et al. (1995).

The present study has a two-fold purpose. First, we compare growth rates from
experiment, simulation and theory in the conditions relevant to ICF. Second, simula-
tions based on different codes and different models are compared in a controlled way
so that differences in the results can be understood and clarified. We find that exper-
iments and simulations generally agree well and that in most cases the compressible
nonlinear theory does a good job of predicting the time history of the perturbation
growth rates.
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The experiments are conducted on the Lawrence Livermore National Laboratory
NOVA laser using beryllium and foam plasmas and have many features that are
useful for comparison to simulation and models. These features include the lack of
a membrane separating the materials and the availability of data over both early
and late time scales. However, the experiments also contain effects not found in the
simulations or models. In particular, radiation is not included and the simulations
and the theories use perfect gas equations of state. A discussion of these issues is
given in § 2.1.2.

The experimental data used here are from previously published results using the
Lawrence Livermore NOVA laser (Dimonte et al. 1996; Dimonte & Remington
1993). The numerical simulations are performed using three different codes: the
front tracking code FronTier (Grove et al. 1993; Holmes et al. 1995), the PPM-based
code PROMETHEUS (Fryxell, Müller & Arnett 1989), and the AMR code RAGE
(Baltrusaitis et al. 1996; Gittings 1992). The theoretical predictions are taken from
the impulsive model of Richtmyer (Richtmyer 1960), the linear theory of RMI for
the case of a reflected rarefaction wave formulated in Yang, Zhang & Sharp (1994),
a nonlinear theory for compressible fluids driven by a shock wave (Zhang & Sohn
1996) and a nonlinear theory for incompressible fluids driven by an impulsive force
(Velikovich & Dimonte 1996).

In addition to the experimental conditions, we give the simulation and modelling
results for a broader range of conditions, both to investigate the changes in interfacial
behaviour and to illustrate the behaviour and degree of validity of the theories in
different regimes.

A completely specified list of the parameters and initial conditions used in the
simulations and models is provided in the appendix so that other workers can
benchmark their results against those reported here.

2. Descriptions of experiments, codes and models
2.1. Experiment

2.1.1. Experimental configuration

The experiments were conducted on the NOVA laser at Lawrence Livermore
National Laboratory as described in Dimonte et al. (1996). The shocks were generated
with an indirect drive configuration by focusing the laser beams (28 kJ, 3 ns) into
a radiation enclosure (hohlraum). This creates a uniform quasi-Planckian X-ray
spectrum, whose equivalent radiation temperatures Tr ∼ 110 eV (low drive) and Tr
∼ 140 eV (high drive) are varied by changing the hohlraum size (∼ 1 mm). The
drive X-rays heat a target mounted on a 740 µm diameter hole in the hohlraum wall,
producing an expanding ablation plasma at the surface and a shock moving into the
target. The target consists of a beryllium ablator (ρBe = 1.7 g cm−3, depth ∆z∼ 100 µm
and 800 µm by 800 µm cross-section) and a low-density foam tamper (ρf = 0.12 g cm−3,
∆z∼ 900 µm and 800 µm by 400 µm cross-section) in planar geometry. The foam is a
CHO matrix doped with Na2WO4 to adjust its X-ray opacity whereas the beryllium
is transparent to the diagnostic X-rays. Two-dimensional sinusoidal perturbations are
imposed at the interface and diagnosed with face-on and side-on radiography.

In addition to the perturbation amplitude we measure the shock and interface
speeds and the foam post-shock density. The beryllium density and the X-ray preheat
are calculated in one dimension with the LASNEX simulation code (Zimmerman
& Kruer 1975) which uses the measured X-ray drive Tr(t), multi-group radiation
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diffusion and tabulated equations of state. The calculations reproduce the measured
quantities very well (Dimonte et al. 1996). They also indicate that the beryllium has
a density of approximately 2 g cm−3 after shocking and subsequent expansion by the
reflected rarefaction and that the target is pre-heated to 1–2 eV (11 000–22 000 K)
ahead of the shock by the high-energy X-rays, leaving both the beryllium and the
foam in a plasma state.

2.1.2. Approximations for simulations and models

Radiation drive and real equations of state are complex. Since our goal is to study
the basic hydrodynamics of the induced RMI the simulations and models use a
pressure drive and ideal gas equations of state.

We determine values of the pressure drive and polytropic exponents γBe (beryllium)
and γf (foam) as follows. The drive pressures are obtained from the peak ablation
pressures computed by LASNEX and are 30 and 15 Mbar for the high and low
drives, respectively. The LASNEX simulations also indicate that the main effect
of the X-ray preheat is to heat the upstream materials to approximately 1–2 eV.
Little motion occurs before the shock reaches the interfaces and therefore the initial
densities are nearly preserved. Under these conditions the initial pressure ahead of the
incident shock is 0.1 Mbar. The effective heat capacity ratios (γ = 1.8 for beryllium
and 1.45 for foam) are obtained by solving the Riemann problem for this two-fluid
configuration to match observed shock-induced velocities and compressions. These
values give a sound speed of 3.254 µm ns−1 in the unshocked beryllium that is used
for calculating the Mach numbers.

By ignoring radiation and real equation-of-state effects there is the possibility that
the conditions used for the simulations and models are different in significant ways
from the conditions in the experiments. In a radiatively driven system such as was used
in the experiments the fluid state behind the driving shock is typically not constant.
In addition, if the X-ray preheat preferentially heats one material over another
or results in excessively high temperatures then movement of the interface before
shocking or non-uniformity in the fluid states may result. The LASNEX simulations
in Dimonte et al. (1996) show, however, that this is not the case. Differences in
the equations of state would lead to different shocked material densities and affect
shock and interface speeds. Referring to table 1 we see that the shocked-foam
density, ρ∗f , and the incident shock speed are well approximated by the ideal gas
model but that the interface and transmitted shock velocities are 15–20% too small.
This is comparable to the experimental error in the shock-induced velocities and
perturbation amplitude. Using the Impulsive Model (§ 2.3.1) to get a crude estimate of
the effect of the speed differences we find that the relative change in the growth rate
should be nearly the same as the relative change in interface velocity. We conclude,
then, that 15–20% differences in amplitudes and growth rates between calculations
and measurements should be regarded as due to theoretical simplifications and
experimental uncertainties.

2.2. Numerical methods

2.2.1. FronTier

FronTier is a front tracking code (Chern et al. 1986; Grove 1987) and is designed
to accurately compute solutions to problems with well-defined features, such as
material interfaces and shock waves. It eliminates smearing of these waves by keeping
true discontinuities at the tracked fronts and provides sub-grid resolution of wave
interactions, such as shock–interface refractions. FronTier has been used with great
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Qty Drive NOVA Model LASNEX

si High 50 50 47
st 90 74 87
uc 71 59 67
ρ∗Be — 2.3 2.2
ρ∗f 0.6 0.6 0.6

si Low 30 35 33
st 49 53 46
uc 35 42 36
ρ∗Be — 2.3 2.2
ρ∗f 0.5 0.55 0.6

Table 1. Experimentally measured hydrodynamic values for high and low drive experiments along
with those given by the γ-law gas approximation and a one-dimensional LASNEX calculation.
Initial densities of beryllium and foam are 1.7 and 0.12 g cm−3. The model uses a drive pressure of
30 and 15 Mbar for high and low drive cases, a pressure of 0.1 Mbar ahead of the incident shock,
and γ of 1.8 and 1.45 for beryllium and foam. All velocities are measured in µm ns−1 where si
and st are the incident and transmitted shock velocities, respectively, and uc is the shocked contact
velocity. ρ∗Be and ρ∗f are shocked densities in beryllium and foam in g cm−3.

success in the computation of unstable interface problems in gas dynamics (Glimm
et al. 1990; Grove et al. 1993; Holmes et al. 1995) and porous media flows (Glimm,
Lindquist & Zhang 1991).

The flow in a FronTier simulation is represented by a composite grid consisting
of a rectangular finite difference lattice of cell-averaged states together with lower-
dimensional dynamic grids that follow the selected fronts. In two dimensions these
moving grids are represented by piecewise linear curves. At each point connecting the
linear elements two states are assigned corresponding to the limiting states at that
point from each side of the curve. By assigning two states at each point it is possible
to represent jumps in states across that wave.

Points on the tracked fronts are propagated in an operator split fashion, with a
movement and state update in the direction normal to the front followed by a finite
difference update in the tangential direction. The tracked fronts serve as internal
boundaries for the update of lattice states through a second-order Godunov method.
Care is taken not to take finite differences across waves, thus eliminating the numerical
diffusion that results from using finite difference schemes at discontinuities.

If two curves cross in the course of a time step, different algorithms are invoked
which resolve the wave interactions. For example, in the case of shock refraction
through a material interface the incident shock crosses the material interface during
the update of the front positions. The code detects this and at the intersection points
creates new curves to follow the transmitted shock and reflected rarefaction wave.

2.2.2. PROMETHEUS

The PROMETHEUS code (Fryxell et al. 1989) solves Euler’s equations on a uni-
form rectangular grid using the piecewise-parabolic method (PPM) (Colella & Wood-
ward 1984; Woodward & Colella 1984). PPM belongs to the family of high-order
Godunov methods, and is designed to provide an accurate treatment of discontinu-
ities. Although the code is formally second-order accurate, the most critical steps in
the method are performed to a higher order of accuracy. The method can accurately
follow shocks which are one to two zones wide without introducing significant post-
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shock oscillations and a contact steepening algorithm is used to reduce the diffusive
spread of contact discontinuities and maintain them with a width of approximately
two zones. Multiple fluids are treated by solving a separate advection equation for
each material, although no fluid interfaces are explicitly tracked. PROMETHEUS
has been used for astrophysical computations of a wide range of problems including
instabilities in supernova explosions (Muller, Fryxell & Arnett 1991), the explosion
mechanism in Type II supernovae (Burrows, Hayes & Fryxell 1995), and non-spherical
accretion flows (Fryxell & Taam 1988).

2.2.3. RAGE

RAGE (Radiation Adaptive Grid Eulerian, Gittings 1992) is a multi-dimensional
Eulerian radiation-hydrodynamics code developed by Los Alamos National Labora-
tory and Science Applications International (SAIC). RAGE features a continuous (in
time and space) adaptive mesh refinement (CAMR) algorithm for following impor-
tant waves, especially shocks and contact discontinuities, with a very fine grid while
using a coarse grid in smooth flow regions. This allows the code to devote the bulk
of the computing resources to those areas where they are needed most. Two of the
key features of the adaption algorithm are the ability to subdivide or combine cells
on each time-step cycle and the restriction that any two neighbouring cells differ by
at most one level of refinement (a factor of two in linear dimension).

RAGE uses a second-order Godunov-type scheme similar to the Eulerian MUSCL
scheme of Colella (Colella 1985). Multiple materials are handled through a separate
advection step for each material (as in PROMETHEUS) and, while there is no explicit
interface tracking or reconstruction algorithm, diffusion is limited at the interface by
the use of the finest cells in the AMR grid. Mixed cells are assumed to be in pressure,
temperature and velocity equilibrium.

RAGE has been extensively validated against a wide variety of both analytic test
problems and detailed experiments. A standard set of analytic hydrodynamic test
problems, which RAGE has successfully calculated, includes shock tubes with various
shock strengths, self-similar blast waves and compression problems, e.g. the ‘Noh’
problems (Noh 1983). Validation against laboratory experiments include ablation-
driven Rayleigh–Taylor NOVA laser experiments (G. Schappert & D. Hollowell 1996,
personal communication) and Los Alamos shock tube experiments (Baltrusaitis et al.
1996).

2.3. Models

We also compare the results of linear and nonlinear models of Richtmyer–Meshkov
instability.

2.3.1. Linear models

Linear models for RMI arise from a linearization of the Euler equations about
solutions for the unperturbed flow. The linearized form of the compressible Euler
equations was derived for the case of a reflected shock wave by Richtmyer (Richtmyer
1960) with the analysis extended to the case of a reflected rarefaction in Yang et al.
(1994) and subsequently in Velikovich (1996). The linearization of the Euler equations
results in a single partial differential equation in one space dimension whose solutions
have been investigated numerically (Yang et al. 1994) and using power series in time
(Velikovich 1996) with essentially identical results. Alternative methods for deriving
linear growth rates are given in Samtaney & Zabusky (1994) and Wouchuk &
Nishihara (1996, 1997).
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The Impulsive Model, also proposed by Richtmyer (Richtmyer 1960), is a simple
approximation to the compressible linear theory. In this model the effect of the shock
is described by an impulse applied to the interface with the flow otherwise assumed
to be incompressible. Richtmyer derived the equation for the amplitude a(t) of a
sinusoidal perturbation,

da(t)

dt
= ȧIM = kA∗a0uc, (2.1)

where k is the wavenumber of the perturbation (= 2π/λ), A∗ is the post-shock Atwood
ratio (ρ∗0−ρ∗1)/(ρ∗0 +ρ∗1) where the shock moves from fluid 1 to fluid 0, uc is the change
in interface velocity due to the action of the shock and a0 is an appropriate initial
amplitude. This equation is presumed valid for amplitudes much smaller than the
wavelength (ka(t)� 1).

The derivation of (2.1) leads to an ambiguous value for the initial amplitude a0.
In practice, a0 is chosen to fit a certain range of data. For example, for positive A∗
Richtmyer (Richtmyer 1960) chose a0 = a0+, the amplitude immediately after shock
compression, to obtain the best agreement with his numerical data for the compressible
linear theory. In Meyer & Blewett (1972) it was shown that when A∗ < 0 better results
were obtained if the initial amplitude was chosen as a± = 1

2
(a0+ + a0−), where a0− is

the pre-shock perturbation amplitude. It is this form which is used in this paper.
Equation (2.1) predicts a growth rate that is constant in time which is in qualitative

agreement with the behaviour predicted by the linear compressible theory for inter-
mediate and late times. At early times, when the linear theories are actually valid, the
impulse model and the linear theory predict qualitatively different time dependencies
for the growth rate. The regions of parameter space in which there is quantitative
agreement or disagreement between the compressible linear theory and the impulse
model is explored in Velikovich (1996) and Yang et al. (1994).

2.3.2. Nonlinear models

Both the compressible linear theory and the impulsive model lose validity once the
amplitude of the perturbation at the material interface grows to a certain size. Several
approaches have been taken to model the nonlinear phase of RMI growth.

Some of the approaches analyse the growth rate of the perturbation by calculating
the velocities of the heavy-fluid spike and light-fluid bubble separately (Alon et al.
1995, 1994; Hecht, Alon & Shvarts 1994; Mikaelian 1996; Zhang 1996) using potential
flow models. However, the solutions are asymptotic in time and do not apply to the
early and intermediate phases of RMI and are not considered here.

Zhang & Sohn (1996, 1997a, b) have developed a nonlinear model for RMI in
compressible fluids which is valid for any density ratio. This model is based on the
idea that, for small initial perturbation amplitudes, an RM unstable system is approx-
imately linear and compressible at early times and is nonlinear and incompressible
at late times. Using Padé approximations and asymptotic matching, they derived the
following expression for the perturbation growth rate:

da(t)

dt
=

ȧlin

1 + ȧlina0+k2t+ max{0, a2
0+k

2 − A2 + 1
2
}ȧ2

link
2t2
. (2.2)

Here ȧlin = dalin(t)/dt is the growth rate predicted by the compressible linear theory
(§ 2.3.1). We emphasize that no impulsive force approximation is made in deriving
(2.2).

In § 3 we compare the predictions of (2.2) with experimental and computational
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data. We find that, with some exceptions, the predictions of the model are in good
agreement with the data for the entire range of times and parameter values considered.

Velikovich & Dimonte (1996) have developed a perturbative method which sys-
tematically generates nonlinear corrections to the Impulsive Model. The method
uses symbolic computation and high-order Padé approximation. The initial velocity
distribution in all modes due to an impulsive force is derived and a time history
of the perturbation is given for the case A = 1 (Velikovich & Dimonte 1996). A
straightforward extension of the analysis in Velikovich & Dimonte (1996) results in
the initial perturbation growth rate for the general case of A 6 1. Since this is an
incompressible model the initial growth rate is also the peak growth. To eighth order
in the parameter ε = ka0− the series for the peak growth rate, ȧpeak , is given by

ȧpeak

ȧIM
= 1− 1

4
ε2 +

19

192
ε4 +

(
1

288
A2 − 167

3840

)
ε6 +

(
6893

344064
− 97

23040
A2

)
ε8 + · · · ,

where ȧIM is the growth rate given by the Impulsive Model. In actual use a Padé
approximation is derived which the extends the applicability of this series outside
its circle of convergence |ε| < 1. This predicted initial growth rate is compared to
experimental and simulation peak growth rates in § 3.1.

3. Comparison of experiment, simulation and theories
In this section we demonstrate agreement between theory, simulation and experi-

ment for single-mode RMI in a variety of parameter regimes. We focus our analysis
on the time-dependent behaviour of the amplitude of the perturbation, defined as
one-half the extent of the mixing region, and of the perturbation growth rate, which
is the time derivative of the amplitude.

We consider seven different initial configurations covering a substantial range of
variation of initial amplitude (§ 3.1) and initial shock strength (§ 3.2). Each config-
uration is labelled by a pair of numbers of the form (initial perturbation ampli-
tude)/(incident shock Mach number). For example, case 10/15.3 corresponds to an
initial perturbation amplitude of 10 µm and an incident shock Mach number of 15.3.
In each case the perturbation wavelength is fixed at 100µm. The three cases 10/15.3,
4/15.3 and 4/10.8 correspond to actual experimental conditions as described in § 2.1
while the remaining four cases, 4/5.6, 4/1.33, 25/15.3 and 50/15.3, are used to illus-
trate the behaviour and validity of the simulations and models for a broad range
of incident shock strength and initial amplitude. Discussion of the initialization and
validation of the simulations is given in the Appendix.

3.1. Initial amplitude variations

The temporal evolution of our most studied case, 10/15.3, is shown in figure 2. Time is
referenced to when the shock completes the interface traversal and is uncertain in the
experiment by approximately 0.25 ns. We note excellent agreement among the results
obtained from numerical simulations, the analytical prediction of the compressible
nonlinear theory and experiment. The compressible linear theory correctly predicts
the growth rate of the instability at very early times, but substantially overestimates
the growth rate at intermediate and late times. The Impulsive Model gives the correct
order of magnitude of the growth rate even with a five-fold compression of the
foam, but it does not describe the temporal evolution. The Impulsive Model and the
compressible linear theory agree at later times.
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Figure 2. Experimental, simulation and theoretical predictions for perturbation growth for the
Mach 15.3, a0− = 10 µm case. (a) Amplitude vs. time. (b) Growth rate vs. time. Time t = 0 is defined
as the time at which the refraction process is complete. Error bars indicate uncertainties in the
amplitude measurements while the experimental growth rate curve in (b) is estimated to be accurate
to within 1.5 µm ns−1.

Several interesting features of the growth rate (Figure 2b) merit discussion. First,
the simulations show a very large spike in the growth rate at early times. This is due
to the ‘direct’ phase inversion (Yang et al. 1994) of the material interface during shock
refraction, since the shocked interface speed, uc, is greater than that of the incident
shock speed, si (table 2, Appendix). This produces a fully inverted interface by the
time the refraction completes. The growth rate spike occurs because, just prior to the
end of the refraction, the centre part of the contact (in the geometry of Figure 1)
has moved past the still unshocked outer edges of the interface. The shocked leftmost
part of the interface is separating from the unshocked rightmost part at a high speed
until the shock has accelerated the entire contact to approximately the same speed,
causing the observed spike. Later (case 4/1.33) we show an ‘indirect’ phase inversion
which occurs when uc < si and da/dt < 0.
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Another interesting feature is the effect of compressibility which is manifested
in two ways. First, the growth rate increases to a peak value of approximately
8.5 µm ns−1 which is much smaller than the uncompressed estimate, i.e. with no
change in material densities or initial amplitude due to the action of the shock,
Aucka0− ≈ 27 µm ns−1. This effect of compressibility is significant and described by all
the calculations and models. Second, compressibility is seen through the oscillations in
the growth rate. The growth rate decreases dramatically near 3 ns and then oscillates
with a period of approximately 5 ns. This time scale is comparable to λ/c∗Be = 4.8 ns
where c∗Be = 20.7 µm ns−1 is the sound speed in the shocked beryllium adjacent to
the interface. This suggests that the oscillations are related to shock reverberations
in the upstream beryllium generated by the curved rarefaction wave (Grove et al.
1993; Holmes et al. 1995) which is confirmed by looking at the interface velocities at
the bubble and spike separately – the oscillations appear in the bubble velocity but
not the spike velocity. The decay and the oscillations in the growth rate are well
described by the simulations and the experiments, although it should be noted that
the experimental growth rate measurement has a large uncertainty of ±1.5 µm ns−1

since it is obtained by differentiating a sixth-order polynomial fit to the measured
amplitude.

We note that after 4 ns the lateral expansion of the experimental target has increased
the perturbation wavelengths by approximately 15%. This may contribute to the
smaller amplitudes seen in the experiments compared to the simulations at these times.

Finally, we observe that (2.2) gives an excellent prediction for decay of the growth
rate with time, within the scatter in the simulations and experiment. Because (2.2)
is based on the idea that the flow is essentially incompressible at late times, the
compressible effects exhibited as oscillations in the simulation and linear theory
growth rate curves are much smaller or missing in the nonlinear theory. Nevertheless,
the amplitude determined by integrating (2.2) in time is in good agreement with the
numerical results and experimental data.

Colour images of the density from the simulations are compared with experimental
side-on radiographs in figure 3. Due to the limited experimental resolution (approxi-
mately 10 µm) only the large-scale features are measured and they are well described
by all three simulations. The experimental interface profiles (in white) are obtained
from intensity contours of the radiographs. The shock is approximately 20% faster
in the experiment than in the simulations due to the differences in equations of state
(§ 2.1.2) but this does not significantly affect the evolution of the RMI.

Simulation images at t = 0 show the modulations in the transmitted shock (red-
brown), interface (yellow-red) and rarefaction wave (light-dark blue). The interface is
inverted compared to the initial perturbation shown in figure 1(a). The experiment
does not have sufficient resolution to measure such a small amplitude and the interface
is noisy and nearly flat. After inversion the perturbation grows in time with good
agreement between the experiment and simulations. For example, the amplitudes in
the three codes at t = 4.2 ns are within 5% of each other. While the transverse width
of the spike (relative to the bubble) appears somewhat larger in the experiment than
in the simulations, some of this may be due to the poor instrumental resolution and
the spatial averaging inherent in radiography.

Apparent in the simulation images is a criss-cross pattern in the foam (on the left).
These density variations, on the order of 6%, are generated by the transmitted shock
as it self-interacts. This shock, while smooth and approximately sinusoidal after re-
fracting through the interface, eventually forms sharp kinks in regions of convergence.
At these kinks complex shock interactions develop, such as Mach triple points, which
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Figure 3. Simulation density plots and experimental radiographs for case 10/15.3. (a) t = 0.0 ns, (b)
t = 1.4 ns, (c) t = 2.8 ns, (d) t = 4.2 ns. Each figure shows the results obtained with the three codes
(RAGE, FronTier and PROMETHEUS, top-to-bottom) along with an experimental image. The
incident shock moves from right to left. The experimental radiograph is an averaged composite over
four wavelengths. Note that at later times the experimental wavelength increases due to expansion
of the experimental target.
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result in the formation of slip lines marking sharp changes in density and flow velocity.
The points of interaction move back and forth across the domain as the transmitted
shock moves, resulting in the observed pattern. The pressure plots from the simula-
tions (not shown) also reveal the shocks generated at these interaction points (pressure
jumps of about 20% at 4.8 ns) which move back toward the interface and affect the
development of the spike, although the effect of these shocks on the spike is not as
great as the effect of the already mentioned shocks from the rarefaction wave which
strike the bubble. While the different simulation methods give results for the growth
rates that are in close agreement, their predictions for the fine-scale structure of the
interface profiles differ. We note, for example, that at 1.4 ns PROMETHEUS shows
substantial grid-generated Kelvin–Helmholtz instability that significantly affects the
shape of the interface at later times. A similar phenomenon was seen in comparisons
to the code CALE in Kane et al. (1997). This enhanced Kelvin–Helmholtz instability
is not observed for less-resolved PROMETHEUS simulations and is due, in part, to
the low numerical diffusion of the PPM scheme at the interface. Kelvin–Helmholtz
instability is also seen in the early-time FronTier and RAGE calculations, but is
much less prominent. This is for different reasons in the two codes. In FronTier
the seeds of the instability are much smaller than in the other two codes since it
uses a piecewise linear curve to represent the initial conditions. In addition, the
FronTier code periodically redistributes the points on the interface in order to main-
tain a constant distance between the interface points, and this redistribution tends to
suppress any very small-wavelength instabilities. RAGE has somewhat more numer-
ical diffusion at the interface than PROMETHEUS so that the Kelvin–Helmholtz
instability is washed out before it grows to significant size. We note that experimental
resolution is insufficient to distinguish between the simulations with respect to this
fine structure.

The variation in perturbation growth as a function of initial amplitude is presented
in figures 4 and 5. Here we show plots of amplitude and growth rate for four different
initial amplitudes, a0− = 4, 10, 25 and 50 µm, with the Mach number held constant at
15.3. The graphs from case 10/15.3 are reprinted here for ease of comparison. In cases
25/15.3 and 50/15.3 only the interface is tracked in the FronTier simulations – the
incident shock and scattered waves are captured by the underlying finite difference
scheme. This is due to the fact that for these large initial amplitudes the shock-contact
refraction is irregular and generates complicated Mach triple-point configurations that
we choose not to follow.

We identify two types of nonlinear behaviour in the growth rates, early and late
phase, that are differentiated by the value of the initial amplitude. With small initial
amplitude, 4 and 10 µm, there is good quantitative agreement with the compressible
linear theory early in time as expected, but not late in time (see figures 5a and 5b). For
example, the growth rate in the simulations and nonlinear theory decays by 50% near
8 ns for a0− = 4 µm and near 3 ns for a0− = 10 µm. Both occur when the amplitude
reaches ka ≈ 1 (a ≈ 20 µm) as observed by Aleshin et al. (1988), although the exact
timing of the decrease is affected by the oscillations due to transverse waves. The
behaviour is quite different for a0− = 25 and 50 µm (figures 5c and 5d) in that the
linear theory fails during the initial rise in the growth rate. The peak growth rates
in the simulation are about half of the linear growth rates, but they are similar to
st − uc ∼ 15 µm ns−1 (arrow in figure 5d). This is interesting because it suggests that
the nonlinearities act to keep the spike penetration into the upstream fluid behind the
transmitted shock.

By distinguishing between these two manifestations of nonlinearity we can estimate
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Figure 4. Comparison of experimental, simulation and theoretical predictions for perturbation amplitude for a Mach 15.3 incident shock, (a) a0 = 4 µm,
(b) a0 = 10 µm, (c) a0 = 25 µm, (d) a0 = 50 µm. The wavelength is held constant at 100 µm.

Figure 5. As figure 4 but for growth rate. In (d) we show the difference between the transmitted shock and interface speeds (see text). This value is
the same for all cases shown in this figure.
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Figure 6. Density plots at late times. Each plot compares the interface development obtained with
the three codes. (a) Case 4/15.3, t = 9.5 ns, (b) 10/15.3, t = 9.6 ns, (c) 25/15.3, t = 3.0 ns, (d) 50/15.3,
t = 2.5 ns. Each figure shows the results of the three codes (RAGE, FronTier and PROMETHEUS,
top-to-bottom).

the applicability of the nonlinear theory. This is possible because (2.2) is obtained
by matching the asymptotic solution with the early-time linear theory. Thus, when
the peak growth rate reaches the linear value the nonlinear theory is accurate as
observed in figures 5(a) and 5(b). When the peak growth is suppressed strongly as
in figure 5(d) the nonlinear theory underestimates the growth rate throughout. The
transition occurs at a0− = 25 µm for which the nonlinear theory is able to describe
the initial 50% reduction in growth rate.

In addition to suppression of the peak growth rate we observe that later growth
is also greatly reduced in the large initial amplitude cases (25 µm and 50 µm). This is
most clear in the case 50/15.3 which barely recovers its initial pre-shock amplitude
even after 8 ns.

These nonlinear effects are evident in the simulation images shown in figure 6 at
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similar amplitudes. For reference, the case with 4 µm initial amplitude (figure 6a) has
a nearly symmetric interface with weak Kelvin–Helmholtz (KH) vortices with the
transmitted shock front flat and well ahead of the interface. As a0− increases the
features become more complex. The small KH vortices turn into long filaments. The
slip lines are stronger (6% in density for 10/15.3 compared to 4% for 4/15.3) and,
in the case of PROMETHEUS, exhibit KH activity. The transmitted shock remains
very close to the spike causing the shock to remain modulated and the tip of the
spike to flatten, especially in the 25/15.3 and 50/15.3 cases. This behaviour supports
the hypothesis that the nonlinear reduction of the growth rate acts to limit the spike
penetration to that of the transmitted shock. This reduction does not occur for the
bubbles because the speed of the rarefaction wave is significantly larger than that of
the interface. This may cause the perturbations to be more symmetric at high Atwood
number as the Mach number increases since by mass conservation the normally
thinner spike will have to fatten if it is not able to grow sufficiently fast.

A surprising aspect of the large-amplitude cases is the agreement among the
simulations. Our growth measure, the difference in velocities and positions at the
extreme points of the interface, is very sensitive to any secondary structures on the
interface. As seen in figure 6, the interfaces are quite complicated, yet the agreement
between predicted growth rates and amplitude is good.

We note the ‘dimple’, or tip-splitting, in the spike, that is most noticeable in
figure 6(b). As these features have been observed in other experiments (Aleshin et
al. 1996) we believe that the splitting is physical, although resolution in the current
experiments is insufficient to resolve such structure. The RAGE images do not show
the splitting, but the figures do indicate flattening. This is likely due to under-resolution
near the interface – the grids chosen are sufficient for convergence in growth rate, but
consideration was not given to resolving such secondary features (see the Appendix).

The effect of nonlinearities can be quantified by plotting the peak growth rate vs.
ka0− as shown in figure 7. Although it can be short lived, the peak growth rate is useful
because it is the most reliable measurement: peak growth occurs early in time when
the experimental radiographs are crisper and the target decompression is minimal. In
addition, it is the best measure of the nonlinearity due to the initial conditions.

The growth rate in figure 7 is scaled to the Meyer–Blewett version of the Impulsive
Model (Meyer & Blewett 1972), ȧIM = A∗ucka0±, because it describes the linear peak
growth very well. The agreement among the measurements and calculations in figure 7
is good. The peak growth rates are within 20% of that obtained from the Impulsive
Model for ka0− < 1, but decrease significantly for larger ka0−. The breakdown of the
linear theory with ka0− is expected, but the failure mechanism is unclear.

We gain some insight into how the linear theory fails and how nonlinearities
affect the dynamics at high Mach numbers by comparing the linear growth rates
with the shock speeds, an approach discussed earlier. For example, at ka0− = 3 we
obtain ȧIM ≈ 45 µm ns−1, which is three times the difference between the speeds
of the transmitted shock and the interface, namely, st − uc = 14.9 µm ns−1. Thus, if
linear theory were to apply for very long, the spike tip would overtake the transmitted
shock. Since such spike penetration is energetically prohibitive we propose a nonlinear
correction factor

Fnl =
1

1 + ȧIM/(st − uc) .
This expression is empirically derived and constructed so that the predicted nonlinear
growth rate, ȧIM × Fnl , is always less than the difference between the interface and
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Figure 7. Comparison of experimental, simulation and theoretical peak growth rates as a function
of initial amplitude with incident Mach number 15.3. Growth rates are scaled to the Meyer–Blewett
formulation of the Impulsive Model. For the simulations we averaged the peak growth rates of
each of the three codes.

transmitted shock speeds and tends to the impulsive growth rate, ȧIM , in the linear
regime. It is in fairly good agreement with the results in figure 7 as indicated by the
dashed line. For fixed initial amplitude the correction is important mainly for strong
shocks since st/uc decreases with increasing Mach number of the transmitted shock
while the induced growth rate would be expected to increase. For our materials,
Fnl ∼ 0.5 at ka0− = 1 for Mach 15.3 shocks where st ∼ 1.25uc. For Mach 1.33,
Fnl ∼ 0.9 where st ∼ 6uc.

3.2. Incident shock strength variations

In this section we explore the effects of compression by varying the incident shock
strength, keeping the initial amplitude fixed at 4 µm.

Figures 8 and 9 show results from calculations and theories for incident shock
Mach numbers of 1.33, 5.6, 10.8 and 15.3 and experimental data for the latter two.
Please note that the time and amplitude scales differ between plots because the growth
rate increases with Mach number.

For Mach 1.33, the compression is weak and the phase reversal is indirect, i.e. it
occurs after the shock refraction is complete (Yang et al. 1994). With the values given
in table 2 in the Appendix, the magnitude is consistent with figure 8(a) at t = 0.
Since the Atwood number is negative the growth rate is negative at approximately
−0.2 µm ns−1 and the amplitude crosses zero near t = a0+/(da/dt) ≈ 10 ns. Thus,
the magnitude of a(t) decreases in figure 8(a) until about 10 ns and then increases
following the phase inversion. For Mach 5.6 the phase inversion occurs during the
shock traversal of the interface because si = 18.2 µm ns−1 < uc = 21 µm ns−1. Thus,
a0+ = a0−(1 − uc/si) = −0.66 µm and the phase inversion is direct. The results are
similar at Mach 10.8 and 15.3 since si < uc. The transition between direct and indirect
inversion occurs at approximately Mach 3 for these materials. Both types of inversion
have been observed at Mach 15 using different materials (Dimonte et al. 1996).

The NOVA experiments at Mach 10.8 and 15.3 obtain amplitudes and growth rates
which are slightly smaller than those in the calculations (Figures 8c, d and 9c, d), but
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Figure 8. Comparison of simulation and theoretical predictions for perturbation amplitudes for initial amplitude of 4µm. (a) Mach 1.33 incident
shock, (b) Mach 5.6, (c) Mach 10.8, (d) Mach 15.3.

Figure 9. As figure 8 but for perturbation growth rates.
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they are within the experimental error indicated. We also note that the agreement
among the simulations is very good for Mach numbers of 5.6 and above, but the
agreement is poorer at Mach 1.33. At 40 ns in case 4/1.33 there is a 20% difference
between the growth rates predicted by FronTier and by PROMETHEUS, although at
earlier times the agreement is better. We believe that this is due to two factors. One
is that the post-shock perturbation amplitude is smaller than in the other cases and,
in fact, continues to decrease for some period after shocking. This means that the
perturbation is not as well resolved, leading to larger numerical errors and difficulties
in determining the interface position for calculation of the amplitude and growth rate.
The second factor is the indirect inversion phenomenon. Interface plots of indirect
inversion show a complicated ‘double hump’ shape after shock refraction rather than
the more sinusoidal shape seen in the cases where direct inversion occurs. It appears
that the interface is quite sensitive to the details of the numerical scheme when it is
in this potentially unstable regime.

Linear theory is able to obtain the peak growth rates quite well in these cases since
ka0− < 1, but it fails sooner as the shock strength is increased. For example, for Mach
1.33 the growth rate peaks near 10 ns and decreases by only 20% over the entire
65 ns. For Mach 15.3, the growth rate peaks near 2 ns but it decreases by a factor of
three by 14 ns. By comparing the different speeds si, uc and st at the various Mach
numbers, we find that the time to peak growth is related to the distance travelled
by the transmitted shock, namely, ∼ 15 λ/st. The decay of the growth rate after the
peak may be related to the large amplitude (ka0+ ∼ 1). For Mach numbers larger
than 5.6, we find that the growth rate is approximately half of the linear rate when
a(t) ∼15–20 µm (ka ∼ 1). This does not seem to apply at Mach 1.33 since the growth
rate is reduced by only 20% at t = 65 ns even though the amplitude has reached
17 µm (ka(t) = 1.1).

The nonlinear theory is able to describe the decay of the growth rate as the
amplitude increases for all Mach numbers except Mach 5.6. In this case it follows the
linear growth rate rather than those of the simulations.

One of the most important factors associated with strong shocks is the reduction
in growth rate due to compressibility. The effect of compression is highlighted in
figure 10 by plotting the peak growth rate vs. Mach number. We include here the
predictions of the nonlinear model of Velikovich (Velikovich & Dimonte 1996). We
chose cases with ka0− < 1 to minimize nonlinear effects with the growth rate scaled to
the uncompressed linear growth rate (Akuca0−) to remove the obvious dependencies
on speed and density. Except for the Richtmyer formulation of the Impulsive Model,
simulations and analytical theories are in good agreement and show a steady decrease
in the scaled growth rate from 1.0 at small Mach number to 0.25 at Mach 15.3. Most
of the peak growth rate reduction occurs for Mach numbers less than 5 and it is
relatively insensitive to increases in the Mach number above this value. The source
of this reduction can be seen with the aid of the impulsive models. For A < 0, the
Meyer–Blewett formulation of the Impulsive Model is appropriate and this ratio is
(A∗/A)/[ 1

2
(1 + (1− uc/si))]. This relation suggests two sources for the reduction in

growth rate. First, the factor A∗/A is due to the material compression and this occurs
even for flat interfaces (Riemann problem). The second factor is due to the geometric
compression of the perturbations at the interface by the shock and represents the
average of the pre- and post-shock amplitudes. As was pointed out by (Meyer &
Blewett (1972)), Richtmyer’s version of the Impulsive Model using the post-shock
amplitude a0−(1 − uc/si) fails for A < 0, and this is indicated in figure 10. In fact,
the Richtmyer formula changes sign near Mach 3 because there is a direct phase
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Figure 10. Comparison of experimental, simulation and theoretical peak growth rates as
a function of incident shock Mach number. The growth rate is scaled by Akuca0−.

inversion for Mach numbers above this point. This critical Mach number depends on
the material densities and gammas, but it can be estimated by solving the Riemann
problem. It would be very instructive to perform experiments with Mach numbers in
the range of 1 to 4 to fill the gap between the incompressible and NOVA regimes.

4. Conclusion
We have used a variety of methods – experiment, simulation and theory – to

investigate Richtmyer–Meshkov instability in order to evaluate the methods and to
study the effects of compression and nonlinearity on instability growth. This is done
by varying the initial amplitude of the interfacial perturbations and the Mach number
of the incident shock while keeping the materials and the perturbation wavelength
constant.

We compare the results of experiments, numerical simulations, linear theory and
nonlinear theories. Although impulsive models are approximate, we also evaluate
them because they provide insight and simple estimates of the growth rate.

There is remarkable agreement among the various methods evaluated in this
investigations in the respective regions of validity, despite the high Mach number and
compression. Linear theory is able to describe the initial evolution of the instability
obtained from the simulations and experiment as long as ka0− < 1. The peak
growth rates agree with the estimate of the Meyer–Blewett model, but not with the
Richtmyer model. The time-dependent nonlinear theory does a good job of describing
the initial rise of the growth rate to the linear value and its subsequent average decay
as the amplitude exceeds 1/k. Since it is matched to the linear theory initially, it
underestimates the growth rate observed in the simulations when ka0− > 1. Also, the
oscillations in the growth rate are diminished because it does not include the shock
reverberations in the upstream fluid. The nonlinear model of Velikovich is able to
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describe the early-time reduction in the peak growth rate when ka0 > 1, but not the
late-time decay because it is not time dependent.

The three simulations with different numerical techniques agree on the large-scale
structure, such as the amplitude of the interface perturbation. They are able to
describe the experimental results even though they approximate the equation of state
by perfect gases. The simulations exhibit differences in the small-scale structure, such
as the Kelvin–Helmholtz roll-up at the interface and slip lines in the upstream fluid
which may be important in the molecular mixing of the two fluids. The experiments
are able to measure the large-scale structure without the liability of membranes and
edge effects. However, they are not able to measure the small-scale structure that
distinguishes the numerical simulations. Thus, future experiments need to have good
resolution, but our results suggest that strong shock effects can be studied at Mach
numbers as low as five.

The effect of compression was studied with ka0− < 1 by varying the Mach number
of the incident shock. This changes not only the fluid densities, but also the relations
between the various wave speeds. Near Mach 1, the compression is minimal and all
models agree with the simulations, namely the growth rate da/dt is Aucka0− and there
is an indirect phase inversion since uc < si and da/dt < 0. At Mach 15.3, the shock is
essentially of infinite strength and the compression effects are evident. The first fluid
is compressed nearly four-fold by the incident shock, but the decompression wave is
large due to the density mismatch and this leaves its final density only 30% larger.
The second fluid is compressed five-fold which makes the post-shock Atwood number
A∗ = −0.6. The interface undergoes a direct phase inversion in this case, namely
a0+ ≈ −0.2a0− because the incident shock speed is smaller than the shocked contact
speed, i.e. uc > si, for such a strong shock. This compression is described well by
linear theory, numerical simulations and experiments. They all obtain a peak growth
rate consistent with the Meyer–Blewett impulsive model, A∗ucka0± ∼ − 9 µm ns−1 and
which is much smaller than the uncompressed estimate Aucka0− ∼ − 35 µm ns−1. The
Richtmyer model gives A∗ucka0+ ≈ 5 µm ns−1 and has both the wrong magnitude and
sign. As indicated earlier in figure 10, the growth rate decreases relative to Aucka0−
between Mach 1 and Mach 5 due to the compression effects. The growth rate then
remains at about 0.2Akuca0 for Mach numbers greater than five since this represents
the infinite shock limit.

Nonlinearities are very important and occur at different times depending on ka0−.
For ka0− � 1, the growth rate is initially given by the linear theory, but it decays later
in time as the amplitude grows to ka ∼ 1. This is described nicely by experiments,
simulations and the nonlinear theory. For ka0− > 1, the behaviour is nonlinear
immediately and the growth rate never attains the value given by linear theory. In
fact, the peak growth rate scaled to the linear value decreases steadily with ka0−.
This investigation is conducted with a Mach 15.3 shock in which the velocities of the
transmitted shock and interface are comparable, st/uc ∼ 1.25. This is an interesting
regime because the linear growth rate is larger than st − uc for ka0− > 1. In this
case, the nonlinear reduction in growth rate keeps the spike penetration into the
downstream fluid behind the transmitted shock. This effect may not be as important
at low Mach numbers where st � uc. Thus, we might expect the spikes and bubbles
to become more symmetric at high Atwood number as the Mach number increases.

For inertial confinement fusion applications, Richtmyer–Meshkov instability occurs
in a more complicated setting. For example, the interface between the fluids is
perturbed in a random fashion and the problem has a spherical geometry rather than
rectangular geometry. It is our hope that the comparison study presented here will
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provide useful guidance for further studies of the Richtmyer–Meshkov instability in
these more complicated settings.

Appendix. Initialization of simulations and models
The material and flow parameters used in the simulations are given in table 2 with

symbols defined schematically in figure 11. The geometry is the same as in figure 1
and all positive velocities are oriented to the left. The velocities listed in the table
have been adjusted so that the post-shock contact is approximately stationary. If the
problems are to be run in the laboratory frame, uc (listed in the table) should be
added to each velocity and the suggested domains changed accordingly.

All computations were performed with a domain width of one full wavelength,
although symmetry in the x-direction could be used to cut this width in half. Table 3
lists domain lengths and initial interface placements used in the simulations. The
domain lengths are optimized by observing that if flow-through boundary conditions
are used at the right and the left of the domain, the computations are unaffected by
boundary signals until the time that reflected signals from exiting transmitted and
reflected waves reach the contact. The one-dimensional unperturbed problem is solved
to determine wave placements that maximize the time for these signals to arrive at
the contact. The length of the domain is set such that this maximum time is at least
as long as the time of the simulation. Note that these domain sizes and interface
placements are appropriate only if the incident shock is initialized near the interface.
Because the domain constraints for the Mach 15.3 case are the most stringent, the
domains for all cases used those dimensions. The domains for the large-amplitude
cases were enlarged somewhat to account for the larger time of refraction, although
the shorter time of simulation probably made this unnecessary. We see no evidence
of boundary signals in our data.
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Simulation number

10/15.3 4/15.3 4/10.8 4/5.6 4/1.33 25/15.3 50/15.3

a0− 10 4 4 4 4 25 50

λ 100

Mach num. 15.3 15.3 10.8 5.6 1.33 15.3 15.3

ρf 0.12

Pf 0.1

cf 10.99

uf −59.44 −59.44 −41.70 −20.95 −2.169 −59.44 −59.44

ρBe 1.7

PBe 0.1

cBe 3.254

uBe −59.44 −59.44 −41.70 −20.95 −2.169 −59.44 −59.44

ρ∗∗Be 5.887 5.887 5.825 5.511 2.466 5.887 5.887

P ∗∗Be 30.07 30.07 14.97 4.003 0.1989 30.07 30.07

c∗∗Be 30.32 30.32 21.51 11.43 3.810 30.32 30.32

u∗∗Be −24.03 −24.03 −16.81 −8.35 −0.825 −24.03 −24.03

ρ∗f 0.5956 0.5956 0.5496 0.4063 0.1454 0.5956 0.5956

P ∗f 5.410 5.410 2.770 0.8470 0.1323 5.410 5.410

c∗f 36.29 36.29 27.03 17.37 11.49 36.29 36.29

u∗f 0

ρ∗Be 2.270 2.270 2.281 2.325 1.965 2.270 2.270

P ∗Be 5.410 5.410 2.770 0.8470 0.1323 5.410 5.410

c∗Be 20.71 20.71 14.78 8.098 3.481 20.71 20.71

u∗Be 0

uc 59.44 59.44 41.70 20.95 2.169 59.44 59.44

si 49.79 49.79 35.14 18.22 4.328 49.79 49.79

st 74.44 74.44 53.35 29.73 12.40 74.44 74.44

γf 1.45

γBe 1.8

Table 2. Material and flow parameters for simulations and models. The geometry is as in figure 1
and the symbols are defined in figure 11 with the state variables obtained from one-dimensional
solutions. The subscripts f and Be refer to foam and beryllium, respectively. Velocities are given
in µm ns−1 (105 cm s−1), lengths in µm (10−4 cm), densities in g cm−3 and pressures in megabars
(1012 g cm−1 s−2). uc is the velocity of an unperturbed contact after shocking, si is the speed of the
incident shock and st is the speed of the transmitted shock, all measured in the laboratory frame
with positive speeds to the left. All velocities other than uc, si and st have been translated by uc
so that the shocked interface is approximately stationary during the computation. The interface is
initialized as z(x) = a0− cos (2πx/100).
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Initial amplitude

4 or 10 µm 25 or 50 µm
Domain width 100 µm 100 µm
Domain length 400 µm 500 µm
Interface position 200 µm 150 µm

Table 3. Domain size and interface position for simulations. The values for the simulations with
initial amplitude of 4 and 10 µm are given in the first column while the values for simulations with
initial amplitudes of 25 and 50 µm are given in the second. These values assume that the incident
shock is near refraction at initialization and that the computations are done in a frame with an
approximately stationary shock, i.e. with the velocity parameters given in table 2.

Each code initialized the incident shock differently. RAGE initialized the incident
shock through an overlay from a one-dimensional computation where the one-
dimensional problem was run sufficiently long for the shock to reach its steady-state
profile. The PROMETHEUS runs achieved a steady shock very quickly and were
initialized with the shock far enough from the interface to enable it to do so. Since
FronTier has steady-state shocks at initialization when a tracked incident shock is
used, no overlay procedure was needed in those cases. In the two cases where an
untracked shock was used, 25/15.3 and 50/15.3, the incident shock was initialized far
from the interface (at least 50 zones distant). The interface was positioned such that
its position at the time of refraction was approximately that given in table 3. Since
the interface is tracked in all cases diffusion of the interface does not occur in the
relatively long period leading to refraction.

The computational grids used in our simulations were sufficient to ensure that
the late-time amplitudes (last time plotted) varied by less than 5% from a grid
with one-half the refinement. In most cases a much smaller difference was seen. All
PROMETHEUS runs used uniform grids of 480 zones across one wavelength (∆x =
0.208 µm) while RAGE used adaptive grids with smallest zones of dimension ∆x =
0.156 µm corresponding to 640 zones across one wavelength. The FronTier simulations
of cases 25/15.3 and 50/15.3 used uniform grids of 200 zones across (∆x = 0.5 µm)
while the others used grids of 300 zones (∆x = 0.33 µm). Note that the FronTier sim-
ulations with initial amplitudes of 25 and 50 µm did not use a tracked incident shock.
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